Using the Bootstrap to Quantify the Authority of an Empirical Ranking by Peter Hall

نویسندگان

  • HUGH MILLER
  • H. MILLER
چکیده

The bootstrap is a popular and convenient method for quantifying the authority of an empirical ordering of attributes, for example of a ranking of the performance of institutions or of the influence of genes on a response variable. In the first of these examples, the number, p, of quantities being ordered is sometimes only moderate in size; in the second it can be very large, often much greater than sample size. However, we show that in both types of problem the conventional bootstrap can produce inconsistency. Moreover, the standard n-out-of-n bootstrap estimator of the distribution of an empirical rank may not converge in the usual sense; the estimator may converge in distribution, but not in probability. Nevertheless, in many cases the bootstrap correctly identifies the support of the asymptotic distribution of ranks. In some contemporary problems, bootstrap prediction intervals for ranks are particularly long, and in this context, we also quantify the accuracy of bootstrap methods, showing that the standard bootstrap gets the order of magnitude of the interval right, but not the constant multiplier of interval length. The m-outof-n bootstrap can improve performance and produce statistical consistency, but it requires empirical choice of m; we suggest a tuning solution to this problem. We show that in genomic examples, where it might be expected that the standard, “synchronous” bootstrap will successfully accommodate nonindependence of vector components, that approach can produce misleading results. An “independent component” bootstrap can overcome these difficulties, even in cases where components are not strictly independent.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimum Block Size in Separate Block Bootstrap to Estimate the Variance of Sample Mean for Lattice Data

The statistical analysis of spatial data is usually done under Gaussian assumption for the underlying random field model. When this assumption is not satisfied, block bootstrap methods can be used to analyze spatial data. One of the crucial problems in this setting is specifying the block sizes. In this paper, we present asymptotic optimal block size for separate block bootstrap to estimate the...

متن کامل

A Bootstrap Interval Robust Data Envelopment Analysis for Estimate Efficiency and Ranking Hospitals

Data envelopment analysis (DEA) is one of non-parametric methods for evaluating efficiency of each unit. Limited resources in healthcare economy is the main reason in measuring efficiency of hospitals. In this study, a bootstrap interval data envelopment analysis (BIRDEA) is proposed for measuring the efficiency of hospitals affiliated with the Hamedan University of Medical Sciences. The propos...

متن کامل

Ranking Decision Making Units, using Non-radial Model, applying Bootstrap

Data envelopment analysis (DEA) is a mathematical programming method in Operations Research that can be used to distinguish between efficient and inefficient decision making units (DMUs). However, the conventional DEA models do not have the ability to rank the efficient DMUs. This article suggests bootstrapping method for ranking measures of technical efficiency as calculated via non-radial mod...

متن کامل

A New Robust Bootstrap Algorithm for the Assessment of Common Set of Weights in Performance Analysis

The performance of the units is defined as the ratio of the weighted sum of outputs to the weighted sum of inputs. These weights can be determined by data envelopment analysis (DEA) models. The inputs and outputs of the related (Decision Making Unit) DMU are assessed by a set of the weights obtained via DEA for each DMU. In addition, the weights are not generally common, but rather, they are ve...

متن کامل

An Empirical Assessment of the Monetary Approach to Endogenous Technical Progress Theory: DSGE approach

Economis growth is one of the main factors for evaluating the performance of governments. Economic growth itself is influenced by other factors that have been addressed in growth theories. Among the factors examined in growth theories, technical progress is of particular importance due to its long-term effects on growth. In recent growth models, the technological progress considered an endogeno...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009